与铸件相比,金属经过锻造加工后能改善其组织结构和力学性能。航晟和铸造组织经过锻造方法热加工变形后由于金属的变形和再结晶,使原来的粗大枝晶和柱状晶粒变为晶粒较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、疏松、气孔、夹渣等压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。
铸件的力学性能低于同材质的锻件力学性能。此外,锻造加工能保证金属纤维组织的连续性,使锻件的纤维组织与锻件外形保持一致,金属流线完整,可保证零件具有良好的力学性能与长的使用寿命采用精密模锻、冷挤压、温挤压等工艺生产的锻件,都是铸件所无法比拟的。
锻件是金属被施加压力,通过塑性变形塑造要求的形状或合适的压缩力的物件。这种力量典型的通过使用铁锤或压力来实现。锻件过程建造了精致的颗粒结构,并改进了金属的物理属性。在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。铸件是用各种铸造方法获得的金属成型物件,即把冶炼好的液态金属,用浇注、压射、吸入或其它浇铸方法注入预先准备好的铸型中,冷却后经落砂、清理和后处理等,所得到的具有一定形状,尺寸和性能的物件。
航晟和大多数晶体金属拉伸实验的韧性断裂有三个明显的阶段,首先工件出现明显的“颈缩”现象,然后在“颈缩”区域产生微小分散的空洞,由于应变的增大微空洞开始长大聚合并逐渐发展为裂纹,裂纹沿剪切面扩展至工件表面,导致工件断裂。目前,虽然韧性断裂形式在塑性加工中比较常见,但是相关理论还有待完善。在金属材料的塑性变形过程中,由于加工方式与工艺参数不同,会导致材料发生不同形式的韧性断裂。
一般常见的韧性断裂均具有如下几个特征:在工件开裂之前由于经历了较大的塑性变形,因此整个断裂过程是一种能量吸收过程,需要消耗较高的能量;在微空洞及微裂纹长大与聚合过程中,会有新的空洞产生与长大,故韧性断裂一般表现为多处断裂;随着应变量的增加,空洞与裂纹不断生成并聚合,但是当变形量不再增加时,裂纹的扩展会立即停止。